BackgroundTicks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borreliosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats. Switzerland is among the countries in which tick-borne diseases are a major public health concern, with increasing incidence rates reported in recent years.MethodsIn response to these challenges, the “Tick Prevention” app was developed by the Zurich University of Applied Sciences and operated by A&K Strategy Ltd. in Switzerland. The app allows for the collection of large amounts of data on tick attachment to humans through a citizen science approach. In this study, citizen science data were utilized to map tick attachment to humans in Switzerland at a 100 m spatial resolution, on a monthly basis, for the years 2015 to 2021. The maps were created using a state-of-the-art modeling approach with the software extension spatialMaxent, which accounts for spatial autocorrelation when creating Maxent models.ResultsOur results consist of 84 maps displaying the risk of tick attachments to humans in Switzerland, with the model showing good overall performance, with median AUCROC values ranging from 0.82 in 2018 to 0.92 in 2017 and 2021 and convincing spatial distribution, verified by tick experts for Switzerland. Our study reveals that tick attachment to humans is particularly high at the edges of settlement areas, especially in sparsely built-up suburban regions with green spaces, while it is lower in densely urbanized areas. Additionally, forested areas near cities also show increased risk levels.ConclusionsThis mapping aims to guide public health interventions to reduce human exposure to ticks and to inform the resource planning of healthcare facilities. Our findings suggest that citizen science data can be valuable for modeling and mapping tick attachment risk, indicating the potential of citizen science data for use in epidemiological surveillance and public healthcare planning.Graphical
Read full abstract