Abstract Failure of ground anchor is a major cause of landslides and severe natural hazards, especially in the highly developed mountainous areas such as New Taipei City. Accurately estimating load on ground anchors is thus essential for evaluating the stability status of slope to prevent landslide from happening. This study first employed correlation analyses to identify possible influential factors of load on ground anchors. Second, various artificial intelligence models were used to map the relationship of the found influencing factors with the current load on ground anchors. The results indicated that the symbiotic organisms search-optimized least squares support vector regression (SOS-LSSVR) model had the optimal accuracy by earning the smallest value of mean absolute percentage error (9.10%) and the most outstanding value of correlation coefficient (R = 0.988). The study applied the established inference model for the real case of estimating load on un-monitoring ground anchors. The analyzed results strongly advised administrators to conduct site surveying and patrolling more frequently to take early proper actions. In summary, the obtained results have demonstrated SOS-LSSVR as an effective alternative for the conventional subjective evaluation methods, which is able to rapidly provide accurate values of load on un-monitoring ground anchors.