The flood risk in coastal areas has been exacerbated by global climate change. Research on flood risk assessment is emerging from the perspective of supply and demand for flood regulation ecosystem services (FRES). However, there are still limitations in the evaluation of lowland regulation, implementation of intelligent algorithms, comparison of multi-grain FRES supply and demand, and overall optimization of security pattern. Therefore, we propose a comprehensive FRES supply assessment method that incorporates soil and vegetation, lowland, and water regulations. Additionally, we introduce the random forest model to enhance the FRES demand assessment approach. Two grain sizes of the sub-catchment area and grid unit are used to compare FRES supply and demand. Using Xiamen as a case study, this research unveils the following findings: (1) Significant disparities exist between the assessment outcomes of FRES based on multiple types of regulatory services and those solely considering soil and vegetation regulation. The areas with high FRES supply extend beyond upper mountain forests to include local lower plains exhibiting strong capabilities for lowland or water system regulation. (2) Consistent yet distinct results are observed when comparing two grain sizes. Imbalances in supply and demand occur in estuaries, bays, and densely built-up regions. Sub-catchment units exhibit wider distribution and concentration, while grid units display more dispersed patterns. (3) In terms of in-situ regulation, 26.77 km2 ecological protection area, 9.85 km2 ecological restoration area, and 119.59 km2 construction land flood control intervention area are demarcated. From a directional regulation perspective, 22 FRES corridors connecting source and sink areas along with 24 pinch points are identified. Optimizing security patterns through coordinated management of FRES supply and demand can enhance the resilience of coastal estuaries.
Read full abstract