Electrical impedances in the range 100 Hz to 800 KHz were measured in potato tubers and carrot root cortex both before and after freeze-thaw cycles. These impedance data were analyzed using equivalent circuit modelling based on complex nonlinear least squares (CNLS) (Zhang and Willison 1991a). After freezing to and thawing from −3, −6, −9 and −12 °C, carrot root tissues were best characterized by a double shell model composed of extracellular resistance, cytoplasmic resistance, plasma membrance capacitance, vacuole interior resistance, and tonoplast capacitance. Although freeze–thaw cycles to −3 or −6 °C did not kill the carrot tissues, extracellular resistance and vacuole interior resistance were halved relative to control tissues, and cytoplasmic resistance decreased to a third of the control value. Plasma membrane capacitance and tonoplast capacitance were not affected by the −3 and −6 °C noninjurious stresses. After carrot root or potato tuber tissues had been killed by freezing (−3 °C for potato tuber and −18 °C for carrot), the tissues were best represented by a single-shell model composed of extravesicular resistance, intravesicular resistance, and vesicle membrane. Compared with unfrozen controls, freeze-killed potato tubers were characterized by a 30-fold decrease in extracellular resistance, a 7-fold decrease in intracellular resistance, and a 10-fold decrease in plasma membrane capacitance. Freeze-killed carrot roots were characterized by a 30-fold decrease in extracellular resistance, 3-fold decrease in intracellular resistance, and 3.5-fold decrease in plasma membrane capacitance. These results are compatible with massive rupturing of protoplasts during lethal freeze–thaw injury.Key words: Solanum tuberosum L., Daucus carota L., freeze–thaw injury, electrical impedance
Read full abstract