ABSTRACTThe development of high‐performance ion battery anode materials is conducive to the rapid development of urban rail transit. Based on first‐principles calculations, this paper studies the potential performance of the recently discovered two‐dimensional material SnSe2 as a negative electrode for zinc ion batteries. By calculating the adsorption energy, the most stable adsorption configuration of Zn was determined. The band gap of intrinsic SnSe2 decreases after strain, which promotes the transition of carriers. The band gap opens after the strain occurs in the Zn adsorbed SnSe2 system (Zn‐SnSe2), which confirms the regulation of strain on the band gap. The lowest diffusion barrier of Zn is 0.083 eV. The theoretical zinc storage capacity is calculated to be 387.550 mAh/g. The calculation results provide theoretical parameters for the application of SnSe2 in ion batteries.