Some of the known inhibitors of pyruvate transport inhibited the activity of carnitine-acylcarnitine translocase. Their order of effectiveness with millimolar concentration required for 50% inhibition given in parentheses, was: Compound UK-5099 (alpha-cyano-beta-(1-phenylindol-3-yl)acrylate) (0.1); alpha-cyano-4-hydroxycinnamate (0.17); alpha-cyano-3-hydroxycinnamate (1); alpha-cyanocinnamate (1); alpha-fluorocinnamate (7); transcinnamate (10); p-hydroxycinnamate (10); phenylpyruvate (22); p-hydroxyphenylpyruvate (25). Kinetically, the alpha-cyano-4-hydroxycinnamate inhibition was mixed and the p-hydroxyphenylpyruvate inhibition was noncompetitive with respect to external (-)-carnitine. The alpha-cyano-4-hydroxycinnamate inhibition was reversible and resulted from its ability to act as a thiol reagent. In general, alpha-cyanocinnamate and its derivatives inhibit carnitine transport at concentrations 100 to 5000 times as high as those known to pyruvate transport. At millimolar concentrations, alpha-cyano-4-hydroxycinnamate inhibited the mitochondrial transport of molecules other than carnitine as well as the activity of carnitine acyltransferases. Pyruvate and carnitine did not complete for transport into and out of mitochondria. These results establish that transmitochondrial transport mechanisms for carnitine and pyruvate involve different carriers.
Read full abstract