The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural acids moves down from bare rock surfaces through cracks to the beds that are more soluble than carbonate rocks. For example, in the area of Carlsbad Caverns in southeastern New Mexico, much of the water responsible for solution that formed the caverns apparently entered the groundwater system through large open fractures and did not form sinkhole topography. East of the Carlsbad Caverns, however, in the Pecos River Valley where the carbonate rocks are overlain by the less soluble Ogallala Formation of Late Tertiary age, solution began along escarpments as the Pecos River and its tributaries cut through the less soluble cover. As these escarpments retreated, sinkholes and other karst features developed. Joints or fractures are essential for initiation of downward percolation of water in compact carbonate rocks such as some Paleozoic limestone in which there is no intergranular permeability. Also joints or fractures and bedding planes may be essential in the initiation of lateral movement of water in the zone of saturation. Where conditions of recharge and discharge are favorable, groundwater may move parallel to the dip. However, the direction of movement of water in most carbonate rocks is not necessarily down dip or parallel to the dip. The general direction of movement of both surface and groundwater may be parallel to the strike in a breached anticline. Faults may restrict the lateral movement of water, especially if water-bearing beds are faulted against relatively impervious beds. Conversely, some fault may serve as avenues through which water may move as, for example, in the Cretaceous Edwards aquifer in the San Antonio area, Texas. Karst aquifers, chiefly carbonate rocks, may be placed in three groups according to water-bearing capacity. Water in aquifers of group 1 occurs chiefly in joints, fractures, and other openings that have not been enlarged by solution. The yield of wells is small. Aquifers in group 2, with low to intermediate yields, are those in which water occurs in joints and fractures with some cavities and channels enlarged by solution. Aquifers in group 3 are those in which the yield of wells and springs range from intermediate to very large. This group includes five of the most productive aquifers in the U.S.A. The water-bearing beds of all of these productive aquifers, except the Biscayne aquifer in southeastern Florida, contain buried paleokarst in which the permeability has been reactivated and enlarged by the present circulation system.