Echicetin, a new protein isolated from Echis carinatus venom by reverse phase and ion exchange chromatography specifically inhibited agglutination of fixed platelets induced by several platelet glycoprotein Ib (GPIb) agonists, such as bovine von Willebrand factor (vWF), alboaggregins, and human vWF in the presence of botrocetin. Unlike alboaggregins, echicetin bound to GPIb but did not induce agglutination of washed or fixed platelets. In contrast to disintegrins, it did not block adenosine 5'-diphosphate (ADP)-induced platelet aggregation in the presence of fibrinogen. The apparent molecular weight of echicetin measured on sodium dodecyl sulfate (SDS) gel electrophoresis was 26 Kd under nonreducing conditions. On reduction, echicetin showed 16 and 14-Kd subunits suggesting that the molecule is a dimer. Reduced echicetin retained its binding activity and its inhibitory effect on the agglutination of fixed platelets induced by bovine vWF. 125I-echicetin bound to fixed platelets with high affinity (kd = 30 +/- 1.8 nmol/L) at 45,000 +/- 2,400 binding sites per platelet. The binding was selectively inhibited by a monoclonal antibody to the 45-Kd N-terminal domain of platelet GPIb, but not by monoclonal antibodies to other regions on GPIb. Binding of 125I-bovine vWF to fixed platelets was strongly inhibited by echicetin. In contrast, bovine vWF showed a much weaker inhibitory activity on binding of 125I-echicetin to platelets. The half life of echicetin in blood was approximately 170 minutes with no detectable degradation. Echicetin significantly prolonged the bleeding time of mice, suggesting that it may inhibit vWF binding to GPIb in vivo as well as in vitro.