Achieving precise stopping of electric locomotives is crucial for the realization of intelligent and unmanned auxiliary transportation systems. Presently, human drivers play a central role in ensuring accurate stopping, presenting obstacles to automation and cargo location precision, especially within the coal mining sector. This article centers on achieving the precise stopping of electric locomotives under various conditions through the utilization of permanent magnet synchronous motor-driven locomotives. This approach introduces a novel stopping control method that integrates a fuzzy proportional–integral–derivative (F-PID) controller with a vector control model for permanent magnet synchronous motors (PMSM). Subsequently, we develop the F-PID controller using the PMSM technique, incorporating new fuzzy rules for each subsystem to enhance control accuracy and efficiency. Finally, extensive simulations and real-world experiments are conducted on an electric locomotive stopping test bed to validate the effectiveness of the proposed control method. The results show that the method consistently achieves precise stopping under diverse working conditions, with an error of less than 0.3 m, confirming its robustness and reliability.
Read full abstract