Siloxanes and synthetic musk compounds (SMCs) have been widely used as additives in household and personal care products. Humans are easily exposed to siloxanes and SMCs originating from these products through ingestion and dermal absorption of indoor dust. In the present study, indoor dust samples were analyzed for 19 siloxanes (cyclic and linear) and 12 SMCs (polycyclic, macrocyclic, and nitro musks) to assess their occurrence, time trends over time, source, and health risks. A total of 18 siloxanes and 10 SMCs were detected in all indoor dust samples obtained from 2011⎯2021, indicating widespread and long-term contamination. Higher detection frequencies and concentrations were associated with siloxanes and SMCs with higher use and strong resistance against degradation processes. Indoor dust samples were dominated by linear siloxanes (L11–L13), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB), musk ketone (MK), and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN). The frequent use of household and personal care products is likely an important source of siloxane and SMC contamination in indoor environments. The concentrations of siloxanes and SMCs in indoor dust increased from 2011 to 2021, particularly, those of linear siloxanes, reflecting the impact of regulatory actions addressing cyclic siloxanes. The profiles of siloxanes remained stable throughout the study period, whereas those of SMCs shifted from nitro to polycyclic musks. The estimated daily intakes (EDIs) of siloxanes and SMCs arising from ingestion were greater than from dermal absorption of indoor dust. The EDIs of siloxanes and SMCs associated with indoor dust indicated that children are exposed to these pollutants.