The delivery of COVID-19 vaccines was successful in reducing hospitalizations and mortality. However, emergence of the Omicron variant resulted in increased virus transmissibility. Consequently, booster vaccination programs were initiated to decrease the risk of severe disease and death among vulnerable members of the population. This study aimed to estimate the effects of the booster program and alternative vaccination strategies on morbidity and mortality due to COVID-19 in the UK. A Susceptible-Exposed-Infectious-Recovered (SEIR) model was used to assess the impact of several vaccination strategies on severe outcomes associated with COVID-19, including hospitalizations, mortality, National Health Service (NHS) capacity quantified by hospital general ward and intensive care unit (ICU) bed days, and patient productivity. The model accounted for age-, risk- and immunity-based stratification of the UK population. Outcomes were evaluated over a 48-week time horizon from September 2022 to August 2023 considering the actual UK autumn 2022/spring 2023 booster campaigns and six counterfactual strategies. The model estimated that the autumn 2022/spring 2023 booster campaign resulted in a reduction of 18,921hospitalizations and 1463 deaths, compared with a no booster scenario. Utilization of hospital bed days due to COVID-19 decreased after the autumn 2022/spring 2023 booster campaign. Expanding the booster eligibility criteria and improving uptake improved all outcomes, including averting twice as many ICU admissions, preventing more than 20% additional deaths, and a sevenfold reduction in long COVID, compared with the autumn 2022/spring 2023 booster campaign. The number of productive days lost was reduced by fivefold indicating that vaccinating a wider population has a beneficial impact on the morbidities associated with COVID-19. Our modelling demonstrates that the autumn 2022/spring 2023 booster campaign reduced COVID-19-associated morbidity and mortality. Booster campaigns with alternative eligibility criteria warrant consideration in the UK, given their potential to further reduce morbidity and mortality as future variants emerge.