Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines). To date, there have been fewer studies on proteins released from the heart (cardiokines) implicated with organ cross-talk. Early evidence for the secretion of cardiac-specific factors facilitating organ cross-talk came in the form of natriuretic peptides which are secreted via the classical endoplasmic reticulum-Golgi pathway. More recently, studies in cardiomyocyte-specific genetic mouse models have revealed cardiac-initiated organ cross-talk. Cardiomyocyte-specific modulation of microRNAs (miR-208a and miR-23-27-24 cluster) and proteins such as the mediator complex subunit 13 (MED13), G-protein-coupled receptor kinase 2 (GRK2), mutant α-myosin heavy-chain (αMHC), ubiquitin-like modifier-activating enzyme (ATG7), oestrogen receptor alpha (ERα) and fibroblast growth factor 21 (FGF21) have resulted in metabolic and renal phenotypes. These studies have implicated a variety of factors which can be secreted via the classical pathway or via non-classical mechanisms including the release of extracellular vesicles. Cross-talk between the heart and the brain has also been described (e.g. via miR-1 and an emerging concept, interoception: detection of internal neural signals). Here we summarize these studies taking into consideration that factors may be secreted in both settings of health and in disease.
Read full abstract