Purpose: To investigate the possible cardioprotective effects and potential pharmacological mechanism of genistein.Methods: Six-week old ZDF and lean rats were randomized into 4 groups (8 rats/group), including group 1 (control lean rats); group 2 (lean rats treated with genistein, 2.5 mg/kg); group 3 (control ZDF rats); and group 4 (ZDF treated with genistein). Two groups (2 and 4) were treated with genistein for 12 weeks, and cardiac functions and metabolic alterations were determined. Macrophage/monocyte chemo-attractant protein-1 (MCP-1), vascular cellular adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) secretion and their messenger RNA transcription level also were observed.Results: Genistein attenuated diabetes-induced cardiac dysfunction and pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signalling pathways. In addition, genistein treatment markedly reduced diabetic-induced MCP-1 (83.33 %), VCAM-1 (74.66 %) and ICAM-1 (71.42 %) secretion and mRNA transcription in ZDF rats.Conclusion: The results demonstrate the putative effects of genistein against cardiovascular dysfunction by improving glucose homeostasis, attenuating oxidative stress and reduced diabeticinduced endothelial dysfunction in ZDF rats. Thus, genistein is a potential candidate for the prevention of cardiovascular diseases.Keywords: Cardiac dysfunction, Genistein, Oxidative stress, Inflammatory response, Insulin resistance, Glucose tolerance
Read full abstract