Diltiazem has been proposed to act by blocking calcium channels of cardiac and smooth muscle since it has pharmacological [12-14] and clinical [10] effects that resemble those of verapamil, an agent that has been shown to block these channels [3]. However, block of the slow inward current by diltiazem has not been directly demonstrated. In fact, it has been suggested that diltiazem has an entirely different mechanism of action [7]. We therefore studied the blocking effects of diltiazem and verapamil on cardiac calcium channels by measuring the slow inward current in voltage-clamped ferret myocardium. Both drugs blocked the slow inward current in a use-dependent fashion, i.e. the block was enhanced by increased frequency of activating clamps and by more positive holding potentials. However, we found that short single activating clamps resulted in minimal block, whereas prolonging the clamp step progressively enhanced the blockade. Thus, a single long clamp caused as much blockade as a train of shorter pulses. These results demonstrate that diltiazem and verapamil block the slow inward current by binding to calcium channels in a state-dependent fashion, i.e. inactivated channels have a high affinity for the drugs, while rested and open channels have a lower affinity.