Myocardial dysfunction is a major cause of early mortality after successful cardiopulmonary resuscitation (CPR) following cardiac arrest (CA). Following the return of spontaneous circulation, myocardial ischemia-reperfusion injury can activate the NF-κB pathway, leading to the transcription of inflammatory genes that impair myocardial function. While clinical studies show hydrocortisone (HC) improves outcomes in CA patients during CPR, its specific role in modulating the NF-κB pathway is unclear. In this study, we established an in vitro model by inducing hypoxia/reoxygenation (H/R) injury in H9C2 cardiomyocytes using Na2S2O4, followed by HC treatment. The results showed that HC treatment of H/R-injured cardiomyocytes promoted proliferation, inhibited apoptosis, and suppressed the NF-κB pathway, thereby reducing IL-6, IL-8, and TNF-α levels. Moreover, inhibition of the NF-κB pathway enhanced the proliferative capacity of H/R cardiomyocytes, decreased apoptosis rates, and reduced IL-6, IL-8, and TNF-α expression levels, with these effects being further amplified by HC treatment. These findings were further supported by in vivo experiments. In conclusion, our study suggests that HC may promote H/R cardiomyocyte proliferation, inhibit apoptosis, and alleviate inflammatory responses by suppressing the NF-κB pathway, providing new evidence to support its potential clinical application in CA management.
Read full abstract