The contributions of allochthonous inputs of food (food falls, plastics and other anthropogenic remains) in the diets of large fish (6 teleosteans, 3 sharks) were analyzed for depths between 500 and 2300m in the deep Balearic basin (western Mediterranean). The analyses were based on gut contents. The identification was based on a multi-analytic approach, comprising morphological features (including morphometric analysis) and molecular genetics (DNA barcoding method). Remains of a number of anthropogenic, inorganic materials (microplastic fibres, plastic bags and cartons) appeared regularly in the guts of deep-sea fish (e.g., in Trachyrhynchus scabrus and Mora moro), though always at low occurrence (9.1% of fish at most) and negligible weights (< 2%W of diet). In our sampling, covering an area of ca. 12km2, large food falls contribute only a little to fish diets by weight, W, e.g., in shark diets they represented 4.5%W for Centroscymnus coelolepis and 11%W for Galeus melastomus. However, the importance of food falls (e.g., cetacean blubber and carcharhinid shark remains) was substantial locally (up to 70.8%W of C. coelolepis diet) particularly near canyons. The arrival of livestock remains (beef flesh, goat ribs and vertebrae) was shown by molecular analyses to contributed to deep-sea shark diets (ca. 5.5%W) comparably to natural food falls. These remains, which originate from human activity, may locally alter the food webs of oligotrophic environments like that of the deep Mediterranean. Food falls of both natural and anthropogenic origin were mainly found in fish collected close to canyon axes. The only cetacean fall documented in the deep Balearic Basin was also near a canyon, the carcass of a small (ca. 1.2m) striped dolphin, Stenella coeruleoalba, collected in a haul at 1750m off Barcelona.