AbstractThis Perspective analyses the perfluoroalkylation reactions by electron donor‐acceptor (EDA) complexes since 2018, while summarizes, in Tables , the vast majority of representative perfluoroalkylation reactions of various classes of organic compounds by EDA complexes and halogen‐bonding interactions. Numerous intriguing reaction methodologies and valuable synthetic instances have emerged. We aim to delve into these new examples comprehensively, while also contemplating the future directions in the field. Subsequent sections will elaborate on the perfluoroalkylation of (hetero)aromatic compounds, carbon‐carbon multiple bonds, perfluoroalkylation of carbonyl compounds, and perfluoroalkylation of isocyanides, covering their synthetic scope and mechanistic insights. Perfluoroalkylation reactions of (hetero)aromatic compounds by EDA complexes. Entry Substrate Complex Reaction conditions Product Ref. 1 [13] 2 [46] 3 RFI (3 equiv.) KOH (1.5 equiv.) Blue LEDs H2O, Ar, 20 h [47] 4 TEEDA (3 equiv.) CFL (25 W) THF, r.t. RF−I (3 equiv.) [48] 5 ICF2CO2Et (1.3 equiv.) Na2CO3 (1.5 equiv.) DMSO (3 mL) Ar, rt. 427 nm LED, 16 h [49] 6 TMG (2.5 equiv.) RF−I (2.5 equiv.) 23 W CFL, MeCN/Hexf (5 : 1) [42,50] 7 TMG (2.5 equiv.) RF−I (2.5 equiv.) 23 W CFL, MeCN [51] 8 Umemoto's reagent (2 equiv.) N‐methylmorpholine (2.5 equiv.) DMF, r.t. [52] 9 Cs2CO3 (2 equiv.) RF−I (3 equiv.) white light H2O (3 equiv.) DMF, r.t., 2 h [53] 10 4.5 W 450 nm laser CaCl2, MeNO2, 0 °C [3] 11 RF−I (1.5 equiv.) t‐BuONa (2 equiv.) DMF Green LEDs [54] 12 or EDA complex I−Rf (2.1 equiv.) TMEDA (2 equiv.) or DBU (2 equiv.) Blue LEDs 24 W [55,56] 13 TFE/water (1 : 1) (0.2 M) CF3SO2Na Blue LEDs r.t., 12 h [84] Perfluoroalkylation reactions of carbon‐carbon multiple bonds and constrained cyclic compounds by EDA complexes. Entry Substrate Complex Reaction conditions Product Ref. 1 Bu4NCl, Hg lamp (6 W) RF−I (1.2 equiv.) CH3OH, 1.5 h r.t, Ar [39] 2 RFI (3 equiv.) KOH (1.5 equiv.) Blue LEDs H2O, Ar, 20 h [47] 3 [57] 4 DIPEA or TMEDA or DBU or TEEDA ……..CF3I CF3−I (3 equiv.) Base (2 equiv.) MeCN or DMF or THF CFL, 25 W with DIPEA, TMEDA or TEEDA; with DBU [48,58,59] 5 Bn2NH MeCN RF−I Blue LED, r.t. [60] 6 Base, Blue LEDs DMF or THF [61] 7 I−RF H2O/toluene=9 : 1 Blue LEDs, 65 °C, 12 h [41] 8 K3PO4 (3 equiv.) RF−I (3 equiv.) CuCl (10 mol%) TMSNCS (3 equiv.) CH3CN (2 mL) Violet LEDs (24 W) Ar, 4 h [37] 9 RF−I (3 equiv.) Diphenylacetaldehyde (10 mol%) Pyrrolidine (40 mol%) DIPEA (2 equiv.) DCE (2.5 mL); O2 (0.8 eq.); Ar White LEDs (2.5 W); 24 h [44,62] 10 DIPEA,DMA Ar (trace air) Blue LEDs, rt. 36–72 h [63] 11 TMEDA Blue LEDs n‐C4F9I DMSO air, 24 h RT [64] 12 K3PO4 (2 equiv.) DABCO (1.2 equiv.) hυ (400 Watt) 50 °C CnF2n+1I (1.8 equiv.) [65–67] 13 Blue LEDs DCE, r.t. [27] 14 2,4,6‐trimethylpyridine MeCN, 60 °C Togni's reagent [68] 15 PMDETA (2 equiv.) DMSO (2 mL) N2, Blue LEDs [69] 16 Blue LEDs [70,71] 17 MeCN (0.2 M) with less than 1 % water CF3SO2Na (1 mmol) Blue LEDs [84] Perfluoroalkylation of carbonyl compounds, isocyanides and hydrazones. Entry Substrate Complex Reaction conditions Product Ref. 1 [72,73] 2 RF−I (0.2 mmol) cis‐catalyst M (20 mol%) 2,6‐lutidine (1.2 equiv.) Blue LEDs, Et2O (0.7 M) ‐10 °C, 20 h [74] 3 white light RF−I [75] 4 phase transfer catalyst Cs2CO3, C6H5Cl/8F18 (2 : 1), 25 °C, RF−I [32] 5 ambient light C4F9−I NaOH (4.1 equiv.) MeCN, R.T. [76] 6 RFI (3 equiv.) KOH (1.5 equiv.) Blue LEDs THF, Ar, 36 h [47] 7 RF−I (2 equiv.) TMEDA (2 equiv.) THF (2 mL) Blue LEDs (25 W) 30 °C, N2 [77] 8 TEEDA (1.5 equiv.) CFL (25 W) THF I−C4F9 [48] 9 Bn2NH Blue LEDs MeCN, RT RF−I [78] 10 TMG (1.5 equiv.) ambient light MeCN, RT I−RF [79] 11 Imidazole (3 equiv.) MeCN, RF−I (2 equiv.) r.t. [80]
Read full abstract