Quantum chemical calculations have been carried out to elucidate the electronic structure as well as to draw structure-property relationships for a series of ferrocenyl hetaryl ketones by means of simulated NMR, IR and UV–vis spectra. In this series, the list of hetaryl groups included furan-2-yl, thiophen-2-yl, selenophen-2-yl, 1H-pyrrol-2-yl and N-methylpyrrol-2-yl. Density functional theory was employed to determine the ground-state properties of the five ketones while their excited-state properties were modeled using a broad range of theoretical methods, namely from time-dependent density functional theory to multiconfigurational and multireference ab initio approaches. The patterns in the 13C and 17O chemical shifts of the carbonyl group were explained by the geometrical twist of hetaryl rings and by the electronic parameters corresponding to π-bonds conjugation and group hardness. Furthermore, the corresponding 13C and 17O shielding constants were analyzed in terms of both their dia/paramagnetic and Lewis/non-Lewis contributions within the framework of natural chemical shielding theory. The pattern in the vibrational frequency of the carbonyl bond was connected with changes in its bond length and bond order. It was established that the electronic absorption spectra of the studied ketones are largely characterized by low-intensity d → π* transitions in the visible region and the dominant high-intensity π → π* transition in the UV region. Finally, the theoretical methods best suited for modeling the excited-state properties of such ketones were designated.
Read full abstract