The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound 1) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound 1 demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC50 values of 7.01 ± 0.39, 24.3 ± 1.29, and 9.55 ± 0.51 µM, respectively. In comparison, doxorubicin exhibited IC50 values of 13.54 ± 0.82, 13.50 ± 0.71, and 6.08 ± 0.32 µM for the corresponding cell lines. Importantly, compound 1 exhibited lower toxicity to the normal WI 38 cell line than doxorubicin, with IC50 values of 46.20 ± 2.59 and 18.13 ± 0.93 µM, respectively, indicating greater selectivity of the target compound compared to the standard anticancer agent doxorubicin. Also, mechanistic experiments demonstrated that compound 1 exhibits inhibitory activity against human carbonic anhydrase hCA IX and XII, with IC50 values of 0.477 ± 0.03 and 1.933 ± 0.11 μM, respectively, indicating enhanced selectivity for cancer-associated isoforms over cytosolic isoforms hCA I and II, with IC50 values of 7.353 ± 0.36 and 12.560 ± 0.74 μM, respectively. Cell cycle studies revealed that compound 1 caused G1 phase arrest in RXF393 cells, and apoptosis experiments verified a substantial induction of apoptosis with significant levels of early and late apoptosis, as well as necrosis (11.69%, 19.78%, and 3.66%, respectively), comparable to those induced by the conventional cytotoxic agent doxorubicin, at 9.91%, 23.37%, and 6.16%, respectively. Molecular docking experiments confirmed the strong binding affinity of compound 1 to the active sites of hCA IX and XII, highlighting significant interactions with zinc-binding groups and hydrophobic residues. These findings underscore the target compound's potential as a viable anticancer agent via targeting CA.
Read full abstract