This study proposes a time-dependent reliability analysis method for aqueduct structures based on concrete carbonation and finite element analysis. The primary goal of this study is to improve the reliability assessment of reinforced concrete aqueducts by incorporating environmental factors such as carbonation over time. First, a three-dimensional finite element model of a reinforced concrete aqueduct is established using the Midas 2022 Civil software, incorporating a time-varying function derived from a predictive model of concrete carbonation depth. Point estimation is then integrated with structural finite element analysis to calculate the first four moments of random variables as functions of concrete carbonation. Additionally, the original performance function is transformed into a normal distribution using dual power transformation and the Jarque–Bera test. The high-order unscented transformation (HUT) is subsequently employed to estimate the first four moments of the transformed performance function, facilitating the calculation of time-varying reliability indices for the carbonated concrete aqueduct. Based on the time-varying reliability index data, a reliability function corresponding to different time points is fitted and applied to service life prediction. The results demonstrate that the proposed method effectively reduces large errors associated with the fourth-moment method in calculating large reliability indices. Furthermore, the comparison with Monte Carlo simulation (MCS) results validates the high efficiency and accuracy of the proposed method, offering a valuable tool for addressing the reliability challenges of aqueducts exposed to carbonation and other environmental factors over time.
Read full abstract