The urban particulate matter (PM) carbonaceous and water-soluble ions were investigated in Amman, Jordan during May 2018–March 2019. The PM2.5 total carbon (TC) annual mean was 7.6 ± 3.6 μg/m3 (organic carbon (OC) 5.9 ± 2.8 μg/m3 and elemental carbon (EC) 1.7 ± 1.1 μg/m3), which was about 16.3% of the PM2.5. The PM10 TC annual mean was 8.4 ± 3.9 μg/m3 (OC 6.5 ± 3.1 μg/m3 and elemental carbon (EC) 1.9 ± 1.1 μg/m3), about 13.3% of the PM10. The PM2.5 total water-soluble ions annual mean was 7.9 ± 1.9 μg/m3 (about 16.9%), and that of the PM10 was 10.1 ± 2.8 μg/m3 (about 16.0%). The minor ions (F−, NO2−, Br−, and PO43−) constituted less than 1% in the PM fractions. The significant fraction was for SO42− (PM2.5 4.7 ± 1.6 μg/m3 (10.0%) and PM10 5.3 ± 1.9 μg/m3 (8.3%)). The NH4+ had higher amounts of PM2.5 (1.3 ± 0.6 μg/m3; 2.7%) than that PM10 (0.9 ± 0.4 μg/m3; 1.4%). During sand and dust storm (SDS) events, TC, Cl−, and NO3− were doubled in PM, SO42− did not increase significantly, and NH4+ slightly decreased. Regression analysis revealed: (1) carbonaceous aerosols come equally from primary and secondary sources, (2) about 50% of the OC came from non-combustion sources, (3) traffic emissions dominate the PM, (4) agricultural sources have a negligible effect, (5) SO42− is completely neutralized by NH4+ in the PM2.5 but there could be additional reactions involved in the PM10, and (6) (NH4)2SO4, was the major species formed by SO42−and NH4+ instead of NH4HSO4. It is recommended to perform long-term sampling and chemical speciation for the urban atmosphere in Jordan.