Herein, we developed a novel composite called FeCeOx@g-C3N4 through a combination of sonication, sintering, and hydrothermal techniques to implement the principles of green chemistry by utilizing reusable nanocomposites in one-pot reactions. To gain a comprehensive understanding of the catalyst's structure, composition, and morphology, various characterization methods were employed. These included FT-IR analysis to examine chemical bonds, SEM and TEM imaging to visualize the catalyst's surface and internal structure, TGA to assess thermal stability, EDS for elemental composition analysis, and XRD to determine crystal structure. The FeCeOx@g-C3N4 nanocatalyst demonstrated remarkable efficacy in the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazole. Noteworthy features of this catalyst included high percentage yield, mild reaction conditions, short reaction time, and an efficient and straightforward procedure. Furthermore, the FeCeOx@g-C3N4 composite exhibited excellent recyclability and reusability. It could be recycled and reused up to four times without a significant decline in catalytic activity.