Preparation of high-efficiency dual-functional catalysts remains the bottleneck for electrochemical water splitting. To prepare a non-precious metal catalyst with high activity and stability, here, we present a seaweed-like structure consisting of transition-metal sulfide nanoplates self-assembled on carbon nanotube sponge networks (SW-CoS@CNT). By adjusting the key parameters during synthesis (e.g., the loading amount and ratio of Co and S precursors), the microstructure can be tailored in a wide range, and sulfur defects can be introduced into the nanoplates by thermal annealing. The resulting SW-CoS@CNT serves as a freestanding dual-functional catalytic electrode, showing low overpotentials of 105 and 218 mV for the hydrogen evolution reaction and the oxygen evolution reaction, respectively, which are superior to most reported transition-metal-sulfide-based catalysts in alkaline solution. Rational design of this hierarchical biomimetic structure may be useful in developing high-performance electrochemical catalysts in renewable energy and environmental fields.