A novel honeycomb-like hierarchical carbon (HHC) derived from wheat bran has been obtained by the facile and environmentally friendly method via hydrothermal carbonization of wheat bran followed by KOH activation process at mild conditions without any template. The prepared carbon has a large Brunauer–Emmett–Teller (BET) surface area of 2,189.2 m2 g−1 and pore volumes of up to 1.1 cm3 g−1. The performance of the HHC as electrodes for electrochemical supercapacitors was evaluated in a symmetric two-electrode cell configuration with 6 M KOH and 1 M TEABF4/AN as the electrolytes. Electrochemical studies show that the supercapacitors based on the as-prepared HHC exhibit an excellent capacitive performance in both aqueous and organic electrolytes. We attribute the outstanding capacitive behavior of HHC to their unique structure and high accessible surface area. Considering that the cost-effective and feasible process, this facile technique presented here will not only provide a promising method for the production of biomass-derived hierarchical carbon but also put forward the application of carbon materials in energy storage and conversion.
Read full abstract