Agricultural food production stands as a primary source of global greenhouse gas emissions, with residue management widely acknowledged as an effective avenue to achieve carbon neutrality. However, there is a lack of comprehensive assessment of the carbon footprint of agricultural residue production, processing, and recycling from farm to gate. Here we conducted a hybrid approach that integrated the DeNitrification-DeComposition (DNDC) model and life cycle carbon footprint to co-optimize water and residue management, targeting carbon neutrality and yield increase. The results revealed that controlled drainage with sub-irrigation (CDSI) served as a potent water management strategy to mitigate greenhouse gas emissions (15.65 %) while increasing yield (24.34 %) compared to free drainage. Regardless of the type of bioproduct, incorporating CDSI with downstream residue utilization exhibited substantial potential for carbon-negative emissions, reducing the average farm carbon footprint to −1538.15 kg CO2 eq yr−1. Among those scenarios, the CDSI with bioethanol scenario particularly stands out with its robust carbon mitigation capability (−1994.94 kg CO2 eq yr−1), driven by the enormous energy demand throughout the agricultural production process and the environmental friendliness of bioethanol, which substantially exceeds that of gasoline. However, challenges such as high plant construction costs and extended investment payback periods associated with residue conversion underscore the need for the urgent establishment of national subsidies and market mechanisms to foster carbon neutrality in agricultural production.
Read full abstract