Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to produce lighter weight, yet safer vehicles has led to the need to understand the crash behaviour of novel materials, such as fibre reinforced polymer composites, metallic foams and sandwich structures. This paper discusses the static indentation response of Carbon Fibre Reinforced Polymer (CFRP) tubes. The side impact on a CFRP tube involves various failure mechanisms. This paper highlights these mechanisms and compares the energy absorption of CFRP tubes with similar Aluminium tubes. The response of the CFRP tubes during bending was modelled using ABAQUS finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.