In nature, birds and bats dynamically alter their wing shapes to suit various flight environments and tasks. This paper focuses on the design and validation of a biomimetic flapping-wing aerial vehicle, named FlexiWing, which features a unique mechanism for active wing deformation. This mechanism allows the wings to adjust their shapes flexibly in response to flight demands, significantly enhancing attitude control and maneuverability.’ ‘This study began with an in-depth exploration of biomimetic principles, focusing particularly on how birds and bats achieve precise control during flight through active wing deformation. Subsequently, we present a detailed account of the design and fabrication process of the active folding biomimetic flapping-wing aerial vehicle, including the design of mechanical mechanisms and material selection. Utilizing lightweight nylon materials and hollow carbon fiber rods, we successfully constructed a mechanically foldable wing structure. To achieve precise control over the aircraft’s movement, an embedded control system was designed, comprising an onboard embedded flight controller and ground-based equipment. The onboard controller uses a high-performance ESP32-C3 processor and a JY901 inertial measurement unit to acquire real-time attitude information of the aircraft. The control system incorporates Wi-Fi communication technology, enabling operators to send commands via a remote control or personal computer to manage flight modes and attitudes. Ultimately, a series of flight experiments were conducted to validate the performance of FlexiWing. The results demonstrate that FlexiWing exhibits remarkable maneuverability and stability, capable of achieving high-precision attitude control through active wing folding, making it adaptable to complex environments and tasks.’
Read full abstract