The construction of highly ordered hierarchical nanoarrays is crucial for obtaining effective transition metal carbon nanomaterial electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, we adopted a Co metal zeolitic imidazolate framework (Co-ZIF) as a precursor by ion-exchange/etching reaction with Fe(NO3)3 to obtain hierarchical N-doped Co-Fe layered double hydroxide (CoFe-LDH) in situ generated in Co-ZIF nanoarrays based on a self-supported carbon cloth (CC) substrate noted as CoFe-LDH@Co-ZIF@CC. Benefiting from the synergistic effect of these species and their highly ordered self-supported nanoarray structure, the catalytic active sites were fully exposed and highly protected in alkaline electrolyte, which significantly promoted electron transport and improved electrochemical performance. The CoFe-LDH@Co-ZIF@CC exhibited the low overpotentials of about 225 and 319 mV at 10 and 100 mA cm−2 with a small Tafel slope of 81.8 mV dec−1 recorded in a 1.0 M KOH electrolyte. In addition, it also showed a long-term durability without obvious decay after 30 h. Therefore, its remarkable OER activity demonstrates this material’s promising application in the green hydrogen energy industry.
Read full abstract