The trophodynamics of per- and polyfluorinated compounds and bromine-based flame retardants were examined in components of a marine food web from the western Canadian Arctic. The animals studied and their relative trophic status in the food web, established using stable isotopes of nitrogen (delta15N), were beluga (Delphinapterus leucas) > ringed seal (Phoca hispida) > Arctic cod (Boreogadus saida) > Pacific herring (Clupea pallasi) approximately equal to Arctic cisco (Coregonus autumnalis) > pelagic amphipod (Themisto libellula) > Arctic copepod (Calanus hyperboreus). For the brominated diphenyl ethers, the lipid adjusted concentrations of the seven congeners analyzed (Sigma7BDEs: -47, -85, -99, -100, -153, -154, and -209) ranged from 205.4 +/- 52.7 ng/g in Arctic cod to 2.6 +/- 0.4 ng/g in ringed seals. Mean Sigma7BDEs concentrations in Arctic copepods, 16.4 ng/g (n = 2, composite sample), were greater than those in the top trophic level (TL) marine mammals and suggests that (i) Arctic copepods are an important dietary component that delivers BDEs to the food web and (ii) because these compounds are bioaccumulative, metabolism and depletion of BDE congeners in top TL mammals is an important biological process. There were differences in the concentration profiles of the isomers of hexabromocyclododecane (HBCD) in the food web. The most notable difference was observed for beluga, where the alpha-isomer was enriched (accounting for approximately 90% of the SigmaHBCD body burden), relative to its primary prey species, Arctic cod, where the alpha-isomer accounted for only 20% of the SigmaHBCD body burden (beta: 4% and gamma: 78%). For the C8-C11 perfluorinated carboxylic acids, the trophic magnification factors (TMFs) were all greater than unity and increased with increasing carbon chain length. PFOS and its neutral precursor, PFOSA, also had TMF values greater than one. There were also pronounced differences in the PFOSA to PFOS ratio in ringed seal (0.04) and in beluga (1.4) and suggests that, in part, there are differences in the efficacy of biotransforming PFOSA by whale and seal top predators that both preferentially feed on Arctic cod.
Read full abstract