Directed energy deposition-arc (DED-arc) additive manufacturing technology was used to repair the damaged 718Plus components. This work shows that TiC/Cr2C3 addition to 718Plus alloy is an effective way to suppress the formation of the unfavorable Laves phase. TiC additions to 718Plus alloy can alleviate the elemental segregation, refine the dendritic structure and promote the formation of blocky TiC-NbC core-shell carbides and NbC carbides, while Cr2C3 additions enable the precipitation of rod-like NbC carbides. During the deposition process, the TiC/Cr2C3 additions were dissolved into the molten pool and decomposed into Ti, Cr, and C. The introduction of additional carbon in the melt drastically consumed the Nb available for Laves phase. The tensile tests show that TiC addition to 718Plus alloy contributed to an increased tensile strength of about 120 MPa due to the reduced amount of Laves phase and the reinforced effect of carbides. The fracture behaviour of carbides was explained in detail. The critical shear stress for blocky carbides to crack is higher than that required for rod-like ones, suggesting that TiC additions were desirable for better ductility compared with Cr2C3 additions.
Read full abstract