• Fluid compositions can be additional indicator of the carbon formation in petrology. • Optimum conditions for diamond growth and preservation correspond to water-rich fluid. • Estimated fluid of the main part of the high diamond grade pipes corresponds to water-rich fluid. • Calculated fluid compositions from EMP pyrope analyses can be used in the prospecting of diamond deposits. P-T- Oxygen fugacity (fO 2 ) conditions and fluid compositions were estimated for the formation conditions of pyrope garnet inclusions in diamonds and xenocrysts from diamond-bearing and diamond-free kimberlites using their total chemical analyses and single oxythermobarometry. Our data indicate that optimal conditions for diamond growth and preservation occur in the presumed water-rich mantle fluids containing the lowest abundance of free atomic carbon. The majority of the calculated C-H-O fluid compositions for diamond formation in peridotite xenoliths from high diamond grade kimberlites correspond to a high hydrogen and low carbon and oxygen atomic fluid percents, while those from the majority of peridotite xenoliths in the low grade diamond kimberlites corresponds to the low hydrogen, high carbon and oxygen atomic percent fluids. This new approach defines the conditions of diamond formation for kimberlitic deposits. It better characterizes diamond grades in kimberlites in comparison to the previous empirical mineralogical Ca-Cr methods and can be used as a more precise mineralogical-petrological method for prospecting for kimberlitic diamond deposits.
Read full abstract