Turmeric and its components have various health beneficial functions. However, little is known about function of bisacurone, which is one of the sesquiterpenes in turmeric, at the compound level. In this study, we investigated the preventive effect of bisacurone on hepatic lipid accumulation and its mechanism in HepG2 cells and ICR mice. In HepG2 cells, bisacurone significantly inhibited fatty acid-induced intracellular lipid accumulation in a dose-dependent manner. Bisacurone at 10 µM increased protein expression of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1A accompanied by phosphorylation of AMP-activated protein kinase. In the liver of ICR mice, bisacurone decreased total lipids, triglyceride, and cholesterol contents. Bisacurone at 10 mg/kg body weight increased phosphorylation of AMP-activated protein kinase, and its downstream acetyl-CoA carboxylase as a rate-limiting enzyme for lipogenesis, while it decreased the nuclear translocation level of sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein as the major transcription factors for lipogenesis. On the other hand, bisacurone promoted lipolysis by up-expression of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1A. Thus, bisacurone might be a valuable food factor for preventing hepatic lipid accumulation by inhibiting lipogenesis and promoting lipolysis through phosphorylation of AMP-activated protein kinase.
Read full abstract