AbstractProtecting components against wear and corrosion is a common way to improve their lifetime. This can be achieved by coating them with a hardfacing material. Common coatings consist of materials such as tungsten carbide or cobalt-chromium alloys, also known as Stellite. Hardfacing materials can be deposited by welding methods like plasma welding or laser cladding. The discrete change of the base material to the hardfacing layer can lead to cracks and chipping. Studies showed a reduced risk of cracking when a functionally graded material is used to create a smooth transition between the base and the hardfacing. Gradings from austenitic steel to cobalt-chromium alloys are already known in the literature. However, there is no knowledge about austenitic- ferritic duplex steels as base material. Therefore, this study aims to demonstrate the feasibility of a functionally graded material from duplex steel to cobalt-chromium alloy with a new approach. By using powder-based directed energy deposition, a graded material with smooth material transition is manufactured additively. Cracking and porosity are examined through metallography. Microhardness measurements as well as the analysis of the chemical composition by energy dispersive X-ray spectroscopy and X-ray fluorescence are used to validate the build-up strategy.
Read full abstract