Metallo-β-lactamases (MBLs) represent one of the main causes of carbapenem resistance in the order Enterobacterales. To combat MBL-producing carbapenem-resistant Enterobacterales, the development of MBL inhibitors can restore carbapenem efficacy for such resistant bacteria. Microbial natural products are a promising source of attractive seed compounds for the development of antimicrobial agents. Here, we report that hydroxyhexylitaconic acids (HHIAs) produced by a member of the genus Aspergillus can suppress carbapenem resistance conferred by MBLs, particularly IMP (imipenemase)-type MBLs. HHIAs were found to be competitive inhibitors with micromolar orders of magnitude against IMP-1 and showed weak inhibitory activity toward VIM-2, while no inhibitory activity against NDM-1 was observed despite the high dosage. The elongated methylene chains of HHIAs seem to play a crucial role in exerting inhibitory activity because itaconic acid, a structural analog without long methylene chains, did not show inhibitory activity against IMP-1. The addition of HHIAs restored meropenem and imipenem efficacy to satisfactory clinical levels against IMP-type MBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. Unlike EDTA and Aspergillomarasmine A, HHIAs did not cause the loss of zinc ions from the active site, resulting in the structural instability of MBLs. X-ray crystallography and in silico docking simulation analyses revealed that two neighboring carboxylates of HHIAs coordinated with two zinc ions in the active sites of VIM-2 and IMP-1, which formed a key interaction observed in MBL inhibitors. Our results indicated that HHIAs are promising for initiating the design of potent inhibitors of IMP-type MBLs.IMPORTANCEThe number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales.