The advent of new technologies and paradigms such as the Internet of Things (IoTs), Digital Twin (DT), Human-Robot Collaboration (HRC), is offering immense opportunities to improve the performance of manufacturing systems, but also opening new challenges. The current scientific literature highlights the presence of numerous theoretical studies, but limited real-life applications, and the need to address interoperability issues, with the aim of valorizing the data continuously generated by humans, robots, machines. This research presents a novel simulation-based DT, designed for supporting HRC optimization in assembly systems. The proposed approach is tested and validated, through a case study in the automotive sector, specifically focusing on an assembly line for car front doors. The results show that it is possible to achieve HRC improvements through the assessment of different working configurations. Furthermore, it is explained how the simulation-based DT, by leveraging the FIWARE/FIROS paradigm, can effectively and efficiently interact with other systems, to enable real-time data exchange, which is nowadays one of the main open research challenges.
Read full abstract