This work aims to probe the slip flow of second-grade fluid. The impetus of the flow is taken to be the electro-osmosis and the pressure gradient. The flow is considered to be in a thin channel-like passage formed by two parallel plates. The potential difference existing between the surface of the solid and fluid is taken to be non-symmetric. The governing equations are formed for the second-grade fluid with the Caputo–Fabrizio fractional derivative. The Laplace transform is used for transforming the problem into space parameters after introducing the dimensionless variables. Instead of developing an analytical expression for inverse Laplacian, the numerical Stehfest algorithm is used. A tabular comparison of the obtained results by two different methods (Stehfest and Tzou) is given and the conformity of the two ensures the validity of our obtained results. The results are also pictured in terms of graphs and carry the information of the slip flow effect. Furthermore, the effect of the fractional parameter on velocity has also been tabulated using different values of fractional parameter.