Clinically relevant matrices such as human blood and serum can cause substantial interference in biosensing measurements, severely compromising the effectiveness of the sensors. We report the characterization of a positively charged lipid membrane that has demonstrated unique features to suppress the nonspecific signal for antifouling effects by using SPR, fluorescence recovery after photobleaching (FRAP), and MALDI-TOF-MS. The ethylphosphocholine (EPC) lipid membrane proved to be exceptionally effective at reducing irreversible interactions from human serum on a Protein A surface. The membrane formation conditions and their effects on membrane fluidity and mobility were characterized for understanding the antifouling functions when various capture molecules were immobilized. Specifically, EPC lipid membranes on a Protein A substrate appear to exhibit a strong interaction, likely through the electrostatic effect with the negatively charged proteins that resulted in a stable hydration layer. The strong interaction also limited lipid mobility, contributing to a robust, protective interface that remained undamaged in undiluted serum. Tailoring a surface with antifouling lipid membranes allows for a range of biosensing applications in highly complex biological media.