BackgroundAge structure and longevity constitute fundamental determinants of mosquito populations’ capacity to transmit pathogens. However, investigations on mosquito-borne diseases primarily focus on aspects such as abundance or dispersal rather than survival and demography. Here, we examine the post-capture longevity of wild-caught populations of the Asian tiger mosquito Aedes albopictus to investigate the influence of environmental factors and individual frailty on longevity.MethodsWe captured females of Ae. albopictus from June to November 2021 in a vegetated and an urban area by two methods of capture (BG traps and Human Landing catch). They were kept in semi-controlled conditions in the field, and survival was monitored daily across the 859 individuals captured. We studied the differences in longevity per capture method and location and the influence on longevity of seasonal, climatic and individual factors.ResultsPhotoperiod, GDD, minimum and maximum temperature and relative humidity showed an effect on the risk of death of females in the field. Females captured in urban area with Human Landing catch methods had greater longevity than females captured in non-urban areas with BG traps. Individual variance, reflecting individual frailties, had an important effect on the risk of death: the greater the frailty, the shorter the post-capture longevity. Overall, longevity is affected not only by climate and seasonal drivers like temperature and photoperiod but also by the individual frailty of mosquitoes.ConclusionThis work unravels environmental drivers of key demographic parameters such as longevity, as modulated by individual frailty, in disease vectors with strong seasonal dynamics. Further demographic understanding of disease vectors in the wild is needed to adopt new surveillance and control strategies and improve our understanding of disease risk and spread.