Paprika, often called bell peppers, is a plant with the Latin name Capsicum annuum var. gross. Paprika in Indonesia has a high selling value, so the opportunity for cultivating the paprika plant itself is enormous. However, the cultivation of this plant cannot be separated from the threat of disease that can affect the yield of paprika. Bacterial spot is one of them, and it is a disease that is very dangerous for paprika plants because the disease infects all parts of the plant. In this case, early detection is needed to carry out appropriate treatment to minimize the effects caused by bacterial spots. Detection of bacterial spots on paprika can be done by direct observation or conducting laboratory tests, but this requires people who have the appropriate knowledge and experience. Based on the above problems, the identification system can be an option in identifying bacterial spot disease in paprika. This research chose the Convolutional Neural Network (CNN) algorithm in the identification system. Because CNN is one of the algorithms that can receive output in the form of an image which is very suitable for the case of bacterial spots on peppers, this research dataset is divided into healthy leaves and leaves infected with bacterial spots. In this study, the implementation of CNN with transfer learning obtained results from a test accuracy of 90%, training accuracy 97% with a loss of 8.5%, validation accuracy of 97.5% with a loss of 6.9%.