Recently, lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability under ambient conditions. Oleic acid and oleylamine are the most commonly used ligands in colloidal CsPbX3 (X = Cl, Br, and I) synthesis. Oleylamine plays a dual role as it stabilizes the surface but in the long run or post-synthesis, it may disturb the colloidal stability due to facile proton exchange leading to the formation of labile oleylammonium halide, which detaches the halide ions from the NC surface. To address these issues, herein, we report an open-atmospheric, facile, efficient, and completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using a novel bromine precursor, bromopropane, which is inexpensive and available at hand. The reaction mechanism follows a trioctylphosphine/oleic acid-mediated surface passivation route that provides an amine-free reaction environment to stabilize ligand capping on the NC surface. Uniform, highly monodisperse NCs of size ∼29 nm were obtained. The as-synthesized NCs have a high photoluminescence quantum yield (PLQY) of around 80%, and especially, exhibited strong stability under ambient conditions and continuous UV irradiation. The PLQY can maintain 83% of the initial one even after 120 days. Furthermore, after 96 h of continuous irradiation under UV light at 365 nm (8 W cm-2) under open ambient conditions, the photoluminescence (PL) intensity showed retention of 68% of its original value with no significant changes in the full width at half-maximum, whereas the amine-based sample retains only 5% of its original PL intensity. Furthermore, we have utilized these NCs to fabricate stable down-converted LED devices. The present work demonstrated the synthesis of ultra-stable CsPbBr3 NCs that can be an ideal candidate for display applications.
Read full abstract