Ethnopharmacological relevanceSouth Africa harbours a large number of Bulbine (Xanthorrhoeaceae) species, which includes ethnobotanically important indigenous species. Traditionally, Bulbine leaves are used by several ethnic groups in South Africa to treat dermatological conditions including wounds, which led to the development of Bulbine-containing cosmetic products. However, scientific evidence is needed to support the claims in treating skin conditions and wound-healing. Aim of the studyThis comparative study was undertaken to investigate the wound-healing properties of five Bulbine species indigenous to South Africa, using in vitro and in vivo models. Materials and methodsFive Bulbine species, B. abyssinica, B. asphodeloides, B. frutescens, B. latifolia and B. narcissifolia were collected from natural populations in the Eastern Cape Province of South Africa. The chemical profiles of the methanol leaf extracts were acquired using ultra-performance liquid chromatography with photodiode array detection in tandem with quadrupole time-of-flight mass spectrometry. The methyl thiazolyl tetrazolium (MTT) assay and maximum tolerated concentration (MTC) assay were used to assess the in vitro and in vivo toxicity of the extracts, respectively. The in vitro scratch assay was employed to monitor cell migration and wound-closure in a HaCaT cell monolayer, following treatment with the plant extracts for 48 h. In vivo wound-healing potential was determined using the zebrafish larvae caudal fin amputation assay, assessed in three-days post fertilization larvae and various concentrations of the plant extracts were tested in both assays to determine the concentration-response effect. Data were analysed using MS Excel® enhanced with the Real Statistics add-in. Results and discussionUsing UPLC-MS, 11 major compounds were tentatively identified in the five Bulbine species. Although the compounds varied between species, all five Bulbine species contained the phenylanthraquinone, knipholone. Kaempferol glucoside was identified in four species, but not in B. abyssinica. The five Bulbine species were non-cytotoxic (cell viability > 80%) towards keratinocytes at all three tested concentrations. However, B. latifolia was toxic towards zebrafish larvae at all the tested concentrations, while the other four species were non-toxic at low concentrations. The results of the scratch assay revealed that B. abyssinica was the most active extract at 100 μg/mL. Compared to the untreated control, wound-closure notably increased by 28% (p < 0.05), 44% (p < 0.01) and 34% (p < 0.05) after 12 h, 24 h and 36 h post-treatment, respectively. Although none of the species achieved 100% caudal fin regeneration by the end of the treatment period, B. frutescens demonstrated the highest regeneration (90%) and most significant difference (p < 0.01) compared to the untreated control. ConclusionThe results revealed that the five Bulbine species have complex chemical profiles, however, they share major compound classes (i.e. phenylanthroquinones and flavonoid analogues) across the species. The study highlights the wound-healing properties of the five species, which is consistent with their traditional use.