Car-following models are crucial in adaptive cruise control systems, making them essential for developing intelligent transportation systems. This study investigates the characteristics of high-speed traffic flow by analyzing the relationship between headway distance and dynamic desired distance. Building upon the optimal velocity model theory, this paper proposes a novel traffic car-following computing system in the time domain by incorporating an absolutely safe time headway strategy and a relatively safe time headway strategy to adapt to the dynamic changes in high-speed traffic flow. The interpretable physical law of motion is used to compute and analyze the car-following behavior of the vehicle. Three different types of car-following behaviors are modeled, and the calculation relationship is optimized to reduce the number of parameters required in the model's adjustment. Furthermore, we improved the calculation of dynamic expected distance in the Intelligent Driver Model (IDM) to better suit actual road traffic conditions. The improved model was then calibrated through simulations that replicated changes in traffic flow. The calibration results demonstrate significant advantages of our new model in improving average traffic flow speed and vehicle speed stability. Compared to the classic car-following model IDM, our proposed model increases road capacity by 8.9%. These findings highlight its potential for widespread application within future intelligent transportation systems. This study optimizes the theoretical framework of car-following models and provides robust technical support for enhancing efficiency within high-speed transportation systems.
Read full abstract