Decorating Zn anodes with functionalized polymers is considered as an effective strategy to inhibit dendrite growth. However, this normally brings extra interfacial resistance rendering slow reaction kinetics of Zn2+ . Herein, a poly(2-vinylpyridine) (P2VP) coating with modulated coordination strength and ion conductivity for dendrite-free Zn anode is reported. The P2VP coating favors a high electrolyte wettability and rapid Zn2+ migration speed (Zn2+ transfer number, tZn 2+ = 0.58). Electrostatic potential calculation shows that P2VP mildly coordinates with Zn2+ (adsorption energy = -0.94eV), which promotes a preferential deposition of Zn along the (002) crystal plane. Notably, the use of partially (26%) quaternized P2VP (q-P2VP) further reduces the interfacial resistance to 126 Ω, leading to a high ion migration speed (tZn 2+ = 0.78) and a considerably low nucleation overpotential (18mV). As a result of the synergistic effect of mild coordination and partial electrolysis, the overpotential of the q-P2VP-decorated Zn anode retains at a considerably low level (≈46mV) over 1000h at a high current density of 10mA cm-2 . The assembled (NH4 )2 V6 O16 ·1.5H2 O || glass fiber || q-P2VP-Zn full cell reveals a lower average capacity decay rate of only 0.018% per cycle within 500 cycles at 1 A g-1 .
Read full abstract