We consider coordination among stocking locations through replenishment strategies that take explicitly into consideration transshipments, transfer of a product among locations at the same echelon level. We incorporate transportation capacity such that transshipment quantities between stocking locations are bounded due to transportation media or the location’s transshipment policy. We model different cases of transshipment capacity as a capacitated network flow problem embedded in a stochastic optimization problem. Under the assumption of instantaneous transshipments, we develop a solution procedure based on infinitesimal perturbation analysis to solve the stochastic optimization problem, where the objective is to find the policy that minimizes the expected total cost of inventory, shortage, and transshipments. Such a numerical approach provides the flexibility to solve complex problems. Investigating two problem settings, we show the impact of transshipment capacity between stocking locations on system behavior. We observe that transportation capacity constraints not only increase total cost, they also modify the inventory distribution throughout the network.
Read full abstract