This article presents the development of a vision system designed to enhance the autonomous navigation capabilities of robots in complex forest environments. Leveraging RGBD and thermic cameras, specifically the Intel RealSense 435i and FLIR ADK, the system integrates diverse visual sensors with advanced image processing algorithms. This integration enables robots to make real-time decisions, recognize obstacles, and dynamically adjust their trajectories during operation. The article focuses on the architectural aspects of the system, emphasizing the role of sensors and the formulation of algorithms crucial for ensuring safety during robot navigation in challenging forest terrains. Additionally, the article discusses the training of two datasets specifically tailored to forest environments, aiming to evaluate their impact on autonomous navigation. Tests conducted in real forest conditions affirm the effectiveness of the developed vision system. The results underscore the system's pivotal contribution to the autonomous navigation of robots in forest environments.