The Hairy Ball Theorem states that every continuous tangent vector field on an even-dimensional sphere must have a zero. We prove that the associated computational problem of (a) computing an approximate zero is PPAD-complete, and (b) computing an exact zero is FIXP-hard. We also consider the Hairy Ball Theorem on toroidal instead of spherical domains and show that the approximate problem remains PPAD-complete. On a conceptual level, our PPAD-membership results are particularly interesting, because they heavily rely on the investigation of multiple-source variants of End-of-Line, the canonical PPAD-complete problem. Our results on these new End-of-Line variants are of independent interest and provide new tools for showing membership in PPAD. In particular, we use them to provide the first full proof of PPAD-completeness for the Imbalance problem defined by Beame et al. in 1998.
Read full abstract