The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription, where liquid chromatography-tandem mass spectrometry is employed for the identification, and sometimes quantification, of the progeny products arising from the replication or transcription of lesion-bearing DNA substrates in vitro and in mammalian cells. We also highlight their applications to lesion bypass, mutagenesis, and repair studies of three representative types of DNA lesions, that is, the methylglyoxal-induced N(2)-CEdG, oxidatively induced 8,5'-cyclopurine-2'-deoxynucleosides, and regioisomeric alkylated thymidine lesions. Specially, we discuss the similar and distinct effects of the minor-groove DNA lesions including N(2)-CEdG and O(2)-alkylated thymidine lesions, as well as the major-groove O(4)-alkylated thymidine lesions on DNA replication and transcription machinery. For example, we found that the addition of an alkyl group to the O(4) position of thymine may facilitate its preferential pairing with guanine and thus induce exclusively the misincorporation of guanine nucleotide opposite the lesion, whereas alkylation of thymine at the O(2) position may render the nucleobase unfavorable in pairing with any of the canonical nucleobases and thus exhibit promiscuous miscoding properties during DNA replication and transcription. The MS-based strategies described herein should be generally applicable for quantitative measurement of the biological consequences and repair of other DNA lesions in vitro and in cells.