Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear. IL-34 knock-out mice were used to determine the role of IL-34 on cardiac remodeling after IR surgery. Then, immunofluorescence, flow cytometry assays, and RNA-seq analysis were performed to explore the underlying mechanisms of IL-34-induced macrophage recruitment and polarization, and further heart failure after IR. By re-analyzing single-cell RNA-seq and single-nucleus RNA-seq data of murine and human ischemic hearts, we showed that IL-34 expression was upregulated after IR. IL-34 knockout mitigated cardiac remodeling, cardiac dysfunction, and fibrosis after IR and vice versa. RNA-seq analysis revealed that IL-34 deletion correlated negatively with immune responses and chemotaxis after IR injury. Consistently, immunofluorescence and flow cytometry assays demonstrated that IL-34 deletion attenuated macrophage recruitment and CCR2+ macrophage polarization. Mechanistically, IL-34 deficiency repressed both the canonical and noncanonical NF-κB signaling pathway, leading to marked reduction of P-IKKβ and P-IκBα kinase levels; downregulation of NF-κB p65, RelB, and p52 expression, which drove the decline in chemokine CCL2 expression. Finally, IL-34 and CCL2 levels were increased in the serum of acute coronary syndrome patients, with a positive correlation between circulating IL-34 and CCL2 levels in clinical patients. In conclusion, IL-34 sustains NF-κB pathway activation to elicit increased CCL2 expression, which contributes to macrophage recruitment and polarization, and subsequently exacerbates cardiac remodeling and heart failure post-IR. Strategies targeting IL-34-centered immunomodulation may provide new therapeutic approaches to prevent and reverse cardiac remodeling and heart failure in clinical MI patients after percutaneous coronary intervention. This study was supported by the National Nature Science Foundation of China (81670352 and 81970327 to R T, 82000368 to Q F).
Read full abstract