Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Although studies have previously investigated metabolic disruptions in the peripheral nervous system (PNS), the exact metabolic mechanisms underlying DPN remain largely unknown. Herein, a specific form of metabolic remodeling involving aberrant ketogenesis within Schwann cells (SCs) in streptozotocin (STZ)-induced type I diabetes mellitus is identified. The PNS adapts poorly to such aberrant ketogenesis, resulting in disrupted energy metabolism, mitochondrial damage, and homeostatic decompensation, ultimately contributing to DPN. Additionally, the maladaptive peripheral ketogenesis is highly dependent on the cannabinoid type-1 receptor (CB1R)-Hmgcs2 axis. Silencing CB1R reprogrammed the metabolism of SCs by blocking maladaptive ketogenesis, resulting in rebalanced energy metabolism, reduced histopathological changes, and improved neuropathic symptoms. Moreover, this metabolic reprogramming can be induced pharmacologically using JD5037, a peripheral CB1R blocker. These findings revealed a new metabolic mechanism underlying DPN, and promoted CB1R as a promising therapeutic target for DPN.
Read full abstract