ABSTRACTVery rough estimates have been made of the total amount, the formation rate and spatial distribution of the Na metal colloid particles induced in rock salt adjacent to four types of radioactive waste canisters. A number of extrapolations were required. Salt immediately adjacent to a lightly shielded, 2.16 kW, high level waste canister could be converted entirely to colloidal Na (and presumably chlorine gas) in 200-400 years. The total Na metal formed will be 250-300 kg. A heavily shielded, 3.3 kW, spent fuel canister will convert roughly 0.3 percent of the salt at the canister surface to colloidal Na and the total sodium metal will be roughly 0.5 kg. Even at the lowest colloid levels the Na metal formed should greatly influence interactions between canisters and the surrounding salt, particularly if brine enters.